
1

Phase Locking, Phase Slips, and Turbulence
        —A New Mechanism for Quiescent H-mode
          —Implications of Cross-phase Evolution  

Z. B. Guo and P. H. Diamond

University of California, San Diego

TH/P1-38

This work is supported by the U. S. Department of Energy, Office of Science, Office of Fusion 
Energy Sciences, under Award Numbers DE-FG02-04ER54738 and DE-SC0008378 



Two major scenarios for edge plasma relaxation

Violent relaxation

⎧
⎨
⎪

⎩⎪

disruption

Type-I ELM

Soft relaxation

⎧
⎨
⎪

⎩⎪

grassy ELMs

Quiescent H-mode

⎫
⎬
⎪

⎭⎪

large amount of 
thermal energy 

released in a short 
duration event

accompanied by 
high frequency 

MHD(coherent or 
incoherent)

⎫
⎬
⎪

⎭⎪



 Features of QH-mode: MHD fluctuations

magnetic field fluctuations shown in Figs. 6 and 7 have the
common feature that the broadband MHD increases at the
time of the wide pedestal transition and that the coherent
EHO ceases at that time. As can be seen in Fig. 6, there are
cases where the coherent EHO comes back for a period of
time; however, this return does not affect the pedestal width.
Accordingly, the onset of the broadband MHD is an essential
characteristic of the wide pedestal state. As can be seen in
Fig. 7(a), the density fluctuations in the steep gradient region
of the edge pedestal also increase after the transition
although close examination of the time behavior shows a
delay of 5–10 ms. This is discussed further in Section IV.

The magnetic probe data in Figs. 6 and 7 also provide
some information on why these shots achieved sustained oper-
ation at zero NBI torque without the need for electromagnetic
torque from externally imposed 3D magnetic fields. Operation
at zero NBI torque and, hence, very low toroidal rotation is of-
ten plagued by the onset of locked modes. Mode locking often
occurs when a coherent MHD mode, such as the coherent
n¼ 1 EHO, locks to the wall owing to magnetic interaction.
Since there are no coherent modes present during the low rota-
tion phase of shots like that in Fig. 6, this mechanism is
absent. This may help to explain why these discharges are
able to operate at zero net NBI torque without the external 3D
magnetic fields. Measurements by another magnetic probe
system confirm the lack of detectable coherent modes at fre-
quencies up to 500 kHz anywhere in the plasma.

In these discovery experiments, there was little time for
parameter space exploration. A power scan was performed to
investigate its effect. As is shown in Fig. 8, increasing the
NBI power by about 35% ultimately led to the return of
ELMs although the shot shown survives for roughly one sec-
ond at the higher power level. Cases with greater power
increase had ELMs even earlier. The increased line averaged
and pedestal electron densities seen in Figs. 8(a) and 8(d) are
probably due to increased NBI fueling while the increase in
bN and pedestal electron pressure in Figs. 8(e) and 8(j) are

FIG. 4. Examples of plasma shapes where the wide pedestal transition is
seen (a) and not seen (b). The unbalance in the shape is characterized by
Drsep, which is the distance at the outer midplane of the plasma between the
field lines which connect to the lower and upper X-points. The shape in (a)
has Drsep" 0 cm while the shape in (b) has Drsep¼ 2 cm. In both cases, the
ion grad B drift is downwards.

FIG. 5. Demonstration of stationary operation of QH-mode plasma with the
wide pedestal. (a) Line averaged and pedestal density, (b) divertor Da emis-
sion, (c) NBI torque Tinj and power Pinj input, (d) ratio of the energy confine-
ment time to the ITER H98y2 scaling and normalized beta, (e) pedestal ion
toroidal rotation speed measured using charge exchange spectroscopy on
fully stripped carbon ions, (f) width of the electron edge pressure pedestal,
(g) electron pressure at the top of the edge pedestal.

FIG. 6. Time histories of the pedestal width and the spectrogram of the
poloidal magnetic field fluctuations determined by external magnetic probes
in the discharge shown in Fig. 5. The magnetic spectrogram is the cross-
power between two toroidally distributed magnetic probes on the outer mid-
plane wall of the DIII-D vacuum vessel. The 30# difference in toroidal angle
allows the determination of the toroidal mode number, which is indicated by
the color plotted; the color scale on the right hand side of the plot shows the
relation between color and mode number. The wide pedestal transition
occurs at about 2490 ms at the time indicated by the vertical line in the plots.
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ExB shear is fundamental...(Garofalo 2011)

ion rotation

ExB shearing

Strong ExB shear is the 
most prominent feature of 
access to QH-mode with 

EHO. 4

 Features of QH-mode: ExB shear



Heat flux ΓQ = δVMHDδP ~ cosΘ

the way of edge pressure profile relaxation

Violant relaxation: 
 

Soft relaxation: 

Near marginal stable state, 
evolution of is governed by 
the cross phase dynamics.

Role of Cross Phase Dynamics in Edge Pressure Relaxation
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cosΘ ~1 cosΘ ~ 0

—To know the behavior of the cross phase, one needs study its 
evolution and dynamics;

—Nearly all models treat cross-phase as time-independent parameter.
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first time, we find that if |V 0
E⇥B

| < |V 0
E⇥B,cr

|, the cross
phase will lock to a fixed value, for which the PB modes
are continually pumped and can reach a large amplitude.
In that case, the thermal energy tends to be released in
a burst, so the pressure profile collapses rapidly. There-
fore, the phase locked state corresponds to the ELMy-H
mode. If |V 0

E⇥B

| > |V 0
E⇥B,cr

|, we show that the cross
phase selects a value that leaves the pressure- and veloc-
ity components of the PB modes out of phase, except for
“phase slips” of short duration. Since the phase slip is
short and occurs periodically, the PB modes are weakly
and periodically pumped. The stronger the E⇥B shear-
ing, the higher the phase slip frequency will be, so the
ELM asymptotes to a continuous oscillation. The e�-
ciency of impurity expulsion in QH-mode is enhanced.
The phase slip provides a means for regulating thermal
energy release, and hence keeps the H-mode in a more
quiescent state. This model gives a new, general way to
understand the ELMy!Q evolution mechanism.

The PB instabilities in the edge of a confined plasma
are driven by the edge pressure gradient[13]. The PB
modes are excited via phase coupling among the PB
pressure- and velocity perturbations, which in turn pro-
duce the PB heat flux. Generally, the evolution of the
edge pressure(P ) can be written in the following form
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P + ~

V ·rP = Dr2
P + s

DW

+ S

in

, (1)

where the total pressure P = hP i+ �P is composed of a
mean- and perturbed component with h...i the poloidal
average. The convection velocity is ~

V = ~

V

E⇥B

+ �

~

V

PB

with ~

V

E⇥B

the E ⇥ B shear flow driven by the radial
electrostatic field and �

~

V

PB

is velocity perturbation as-
sociated with the PB mode. s

DW

is the noise associated
with the ambient small scale drift wave turbulence(e.g.,
ion-temperature-gradient turbulence). Dr2

P accounts
for the dissipation of the pressure, with D a di↵usion co-
e�cient. S

in

is associated with the heat flux from the
core of the Tokamak, so Eqn. (1) is a flux-driven sys-
tem. The self sustained state is reached via the balance
between transport and injection(Fig. 1). The evolution

FIG. 1: Set up of the analysis.

equation for the mean pressure follows as
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hP i = �@

x

h�V
PB,x

�P i+ (D +D

T

)r2hP i+ S

in

, (2)

where the noise impacts the evolution of hP i via a tur-
bulent di↵usion process, and hence one has hs

DW

i =
D

T

r2hP i with D

T

the e↵ective di↵usion coe�cient.
Since the ambient turbulence is strongly quenched in
the H-mode, D

T

can not reach a significant level.
h�V

PB,x

�P i is the heat flux driven by PB modes. To ex-
cite PB modes, a finite cross correlation between �V

PB,x

and �P is required. This is in turn determined by their
cross phase. If the cross phase is ⇡/2, �V

PB,x

and �P

will be out of phase, and the pumping of the PB modes
will stop. In contrast to eigenmode or quasi-linear anal-
ysis(where the cross phase is taken fixed), in this model
the cross phase is evolving dynamically. The framework
of phase dynamics aims to capture this. A direct way to
obtain the evolution equation for the cross phase is via
the evolution equation of �P
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. The role of s̃

PB

in

ELM crash dynamics has been addressed in the refer-
ence [4]. The noise s̃ can trigger stochastic avalanches
of �P , which serves as a mechanism for generating
pressure perturbations[14]. After Fourier transformation

for �P and �
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k where ⇥
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are the
phases of �P

k

and �V

PB,k

. Then the real part of the
Fourier component of the cross correlation can be writ-
ten as h�V

PB,x

�P i
k

= |�V
PB,kx

||�P
k

|cos(⇥
k

� ↵

k

). The
phase di↵erence, ⇥

k
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k

, is just the cross phase between
�

~

V

PB,k

and �P

k

. For kinetic velocity fields, ↵
k

acts as
a reference phase, so that without lose of generality,
we can take ↵

k

= 0. Then the cross phase dynamics
is determined solely by ⇥

k

. To obtain a compact form
for its evolution, we use the approximations: (1) the
intensities of �P

k

and �V

PB,k

vary slowly in time and
space, i.e., |@

x

ln|�P
k

||, |@
x

ln|�V
PB,k

|| ⌧ |k|; (2) the rate
of spatial variation of the cross phase is much smaller
than |k|, i.e., |r⇥

k

| ⌧ |k|; (3) the poloidal component
of ~

V

E⇥B

� toroidal component. Approximations (1)
and (2) are proper for the H-mode state, where the
inhomogeneities in |�P

k

|, |�V
PB,k

| and ⇥
k

originate in
the pedestal structure. Approximation (3) applies to
toroidally confined plasmas. Since V

E⇥B

is di↵erential
rotation, we can reexpress the 3rd term on the LHS of
Eqn. (3) as ~

V

E⇥B

· r�P = V

0
E⇥B,y

�x@

y

�P where �x

measures the distance from the center of the envelope
of �P . �x can be estimated as the radial extent of �P .
Substituting the Fourier representations of �P and �V

PB

into eqn. (3) and using the approximations above yields

∂
∂t

P = −∇ i δVMHDδP + (D + DT )∇
2 P + Sin

Mean pressure:

heat flux
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The Setup

heat flux by MHD fluctuation 
neoclassical 

diffusion
anomalous diffusion by
 small scale turbulence



δP⇒ δPk = δPk e
i
!
k i!x+iΘ δVMHD ⇒ δVMHD,k = δVMHD,k e

i
!
k i!x+iαFourier transformation:

(2) δPk , δVMHD,k  vary slowly in time and space, 

d
dt

Θ = ky V ′ Δx − RMHD P ′ sinΘ + !sΘk

⇒(1) taking reference phase α = 0

Cross Phase Evolution Equation

Kuramoto’78)(Adler’46,A nonlinear equation for the cross phase:
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δVMHD = RMHDδP

Approximations:

kinetic velocity perturbation

(3) ∇Θ ≪ k
near marginal state⇒

0D phase evolution⇒



d
dt

Θ = ky V ′ Δx − RMHD P ′ sinΘ + !sΘk

detuning by ExB shear pinning force

random phase scattering

Cross Phase Evolution Equation

8

increasing the cross-phase,
so that reducing heat flux

 attracting the cross-phase to a low value,
so that the MHD turbulence is pumped and 

the heat flux is enhanced 

coming from nonlinear mode coupling,
reducing the coherence of the cross-phase



 ky V ′ Δx < RMHD P ′(1) If                     : phase locking   

Cross phase is ‘attracted’ to a fixed value

Θ = arcsin
ky V ′ Δx

RMHD P ′
< π
2

Phase Locking for Weak ExB shear
d
dt

Θ = ky V ′ Δx − RMHD P ′ sinΘ + !sΘk
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Scenario 1: QH with EHO ⇔



δVPBδP k ~ cosΘ ≠ 0 Turbulence fields are 
continuously pumped phase

locked

⇒ burst:ELMy H-mode 

θk

2π

t

 Phase locking
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convergent to a quasi-linear heat flux

⇒



 ky V ′ Δx > RMHD P ′(2)

Periodic phase slips(SHORT)                 Periodic cross-correlation(SHORT)⇔
turbulence fields are transiently pumped during the short phase slips

phase slip

 Coherent Phase Slips—EHO for
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Scenario 1: QH with EHO⇔
′VE×B > ′VE×B,cr



Phase slip(EHO) frequency:

ΩEHO ~10kHzΩslip < VE×B ′ ~100kHz

E.g., DIIID

  Frequency of Coherent Phase Slips

12

ΩslipΔE ! Sin ⇒Ωslip↗,ΔE↘Energy release in each phase slip:

poloidal mode # dependence 

Scenario 1: QH with EHO⇔



Scaling of the Critical ExB Shear: 

3

the evolution equation for the cross phase ⇥
k

:

d

dt

⇥
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= k
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�x� |�V
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|
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| hP i0sin⇥
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+ s̃

⇥
k

, (4)

where s̃

⇥
k

is the random phase scattering induced by the
noise s̃

k

. Eqn. (4) is just the Adler equation[15], and
is also the mean field form of the Kuramoto model—
the most representative model describing synchronization
phenomena in populations of coupled oscillators[16]. The
1st term on the RHS of Eqn. (4) is the winding e↵ect
due to shearing, which tends to modulate the cross phase
between �P

k

and �V

PB,k

. The 2nd term acts as a pin-
ning force. It is a nonlinear term and attracts the cross
phase to a fixed value. |�V

PB,kx

|/|�P
k

| is determined by
the response function of the relevant mode(here, the PB
mode). This factor is in turn determined by the struc-
ture of the PB mode, and the dependence upon the linear
growth rate, E⇥B shearing and the nonlinear saturation
mechanism. Eqn. (4) provides a simple, straightforward
way to capture the essence of the cross phase dynamics.
Eqn. (4) is also a general equation for describing phase
dynamics in systems with convective interaction, and so
has broad applicability.

Focusing on the influence of flow shear on the cross
phase dynamics, we first consider the scenario of no
noise(s̃

k

= 0). In this scenario, one has

d

dt

⇥
k

= k

y

V

0
E⇥B

�x� |�V
PB,kx

|
|�P
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| hP i0sin⇥
k

. (5)

There exist two types of solutions of Eqn. (5): one phase
locked and the other the phase slip. The phase locked
solution is

⇥
k

= �arc sin
k

y

V

0
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�x|�P
k

|
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PB,kx

|hP i0 , (6)

for |k
y

V

0
E⇥B

�x| < |�V
PB,kx

|
|�P

k

| |hP i0|.

⇥
k

is ‘locked’ to a stable fixed value(Fig. 2) and |⇥
k

| <
⇡/2, so �P

k

and �V

PB,k

stay coherent, and the thermal
energy stored in the mean pressure profile is continuously
extracted by PB mode-induced heat flux. The phase
locked solution provides a robust route for thermal energy
release. With locked phase, �P will grow large, leading to
collapse of the edge pressure profile and the formation of
filamentary structures[17]. This violent thermal energy
eruption phenomenon corresponds to the so-called ELMy
H-mode. V

E⇥B

shearing tends to stabilize the ELMy H-
mode via upshifting the value of |⇥

k

|, which in turn re-
duces the size of the ELM. Another factor impacting the
size of the ELM is the spectrum structure of �V

PB,k

. For
a broad spectrum, the random scatterings among di↵er-
ent PB modes tend to facilitate the formation of a state
of PB turbulence, so that size of the induced ELM is
reduced[4].

The phase slip solution can be cast in the following
form
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is a certain periodic function with period 2⇡, i.e., h(x+
2⇡) = h(x). The specific form of h(x)[15] is
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with K = k
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|). A very
interesting property of the phase slip solution is that
most of the time, ⇥

k

= 2n⇡ + ⇡/2(here we assume
k

y

V

0
E⇥B

�x > 0; n is a positive integer), i.e., �P
k

and
�V

PB,k

stay out of phase, except for short durations of
the phase slip(Fig. 2). During the phase slips, the PB
modes are pumped, impulsively. Since most time �P

k

and �V

PB,k

are out of phase, the thermal energy tends
to be released in small episodes and hence the H-mode
accesses a more quiescent state. The frequency of the
phase slip in Eqn. (7) is

⌦
slip

= k
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0
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K
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K
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In contrast to the phase locked scenario, here E ⇥ B

shearing tends to increase the frequency of the phase
slips. I. e, the phase slip is easier to occur when V

0
E⇥B

becomes stronger(Fig. 2. The increase of the edge
E⇥B shearing will improve the e↵ectiveness of the QH-
mode for impurity control. In the strong shearing limit,p
K

2 � 1/K ! 1, one has ⌦
slip

' !

k

. There, the cross
phase evolves so that the QH-mode supports a periodic
oscillation with no bursts.
The critical E ⇥B shearing rate, governing the evolu-

tion from phase locked state to phase slip state(i.e., the
ELMy!Q evolution), is obtained by requiring |⇥
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—ion’s mass; n
i

—ion’s den-
sity; �

PB

—the linear growth rate of the PB mode;
✏ = a/R—the aspect ratio of the tokamak; B

✓

—the
strength of poloidal magnetic field)[18]. In the case
of strong E ⇥ B shearing(V 0
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> �

PB

), one obtains

Ions’ Radial momentum equation:
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. Eqn. (4) is just the Adler equation[15], and
is also the mean field form of the Kuramoto model—
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1st term on the RHS of Eqn. (4) is the winding e↵ect
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ning force. It is a nonlinear term and attracts the cross
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| is determined by
the response function of the relevant mode(here, the PB
mode). This factor is in turn determined by the struc-
ture of the PB mode, and the dependence upon the linear
growth rate, E⇥B shearing and the nonlinear saturation
mechanism. Eqn. (4) provides a simple, straightforward
way to capture the essence of the cross phase dynamics.
Eqn. (4) is also a general equation for describing phase
dynamics in systems with convective interaction, and so
has broad applicability.

Focusing on the influence of flow shear on the cross
phase dynamics, we first consider the scenario of no
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stay coherent, and the thermal
energy stored in the mean pressure profile is continuously
extracted by PB mode-induced heat flux. The phase
locked solution provides a robust route for thermal energy
release. With locked phase, �P will grow large, leading to
collapse of the edge pressure profile and the formation of
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eruption phenomenon corresponds to the so-called ELMy
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. For
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ent PB modes tend to facilitate the formation of a state
of PB turbulence, so that size of the induced ELM is
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to be released in small episodes and hence the H-mode
accesses a more quiescent state. The frequency of the
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In contrast to the phase locked scenario, here E ⇥ B

shearing tends to increase the frequency of the phase
slips. I. e, the phase slip is easier to occur when V

0
E⇥B

becomes stronger(Fig. 2. The increase of the edge
E⇥B shearing will improve the e↵ectiveness of the QH-
mode for impurity control. In the strong shearing limit,p
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2 � 1/K ! 1, one has ⌦
slip
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. There, the cross
phase evolves so that the QH-mode supports a periodic
oscillation with no bursts.
The critical E ⇥B shearing rate, governing the evolu-

tion from phase locked state to phase slip state(i.e., the
ELMy!Q evolution), is obtained by requiring |⇥
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the evolution equation for the cross phase ⇥
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where s̃

⇥
k

is the random phase scattering induced by the
noise s̃

k

. Eqn. (4) is just the Adler equation[15], and
is also the mean field form of the Kuramoto model—
the most representative model describing synchronization
phenomena in populations of coupled oscillators[16]. The
1st term on the RHS of Eqn. (4) is the winding e↵ect
due to shearing, which tends to modulate the cross phase
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. The 2nd term acts as a pin-
ning force. It is a nonlinear term and attracts the cross
phase to a fixed value. |�V
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| is determined by
the response function of the relevant mode(here, the PB
mode). This factor is in turn determined by the struc-
ture of the PB mode, and the dependence upon the linear
growth rate, E⇥B shearing and the nonlinear saturation
mechanism. Eqn. (4) provides a simple, straightforward
way to capture the essence of the cross phase dynamics.
Eqn. (4) is also a general equation for describing phase
dynamics in systems with convective interaction, and so
has broad applicability.

Focusing on the influence of flow shear on the cross
phase dynamics, we first consider the scenario of no
noise(s̃
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There exist two types of solutions of Eqn. (5): one phase
locked and the other the phase slip. The phase locked
solution is
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is ‘locked’ to a stable fixed value(Fig. 2) and |⇥
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stay coherent, and the thermal
energy stored in the mean pressure profile is continuously
extracted by PB mode-induced heat flux. The phase
locked solution provides a robust route for thermal energy
release. With locked phase, �P will grow large, leading to
collapse of the edge pressure profile and the formation of
filamentary structures[17]. This violent thermal energy
eruption phenomenon corresponds to the so-called ELMy
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duces the size of the ELM. Another factor impacting the
size of the ELM is the spectrum structure of �V
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. For
a broad spectrum, the random scatterings among di↵er-
ent PB modes tend to facilitate the formation of a state
of PB turbulence, so that size of the induced ELM is
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E⇥B shearing will improve the e↵ectiveness of the QH-
mode for impurity control. In the strong shearing limit,p
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. There, the cross
phase evolves so that the QH-mode supports a periodic
oscillation with no bursts.
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where L
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is defined as L
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is the Alfvén time across the edge with V
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(B—the strength of total magnetic field). � =
2hP i/B2 is the plasma beta in the edge region. In de-
riving Eqn. (11), the approximation |k

x

| ' 1/�x was
employed. Using the radial force balance relation for
the ions enE = �V

�
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✓

+ @

x

hP i(V
�

—ion’s toroidal ro-
tation velocity; we have assumed ion’s poloidal rota-
tion in the H-mode pedestal is low[9]), one has V 0
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/B + ( hP i0
enB

)0. Therefore, there are two ways to
facilitate accessing QH-mode: enhancing the steepness
of the edge pressure profile(which requires more exter-
nal power input) and increasing the toroidal rotation
shear(which is more feasible in practice, currently).

FIG. 2: Phase locked(blue plot) vs phase slip(green- and red
plots).

The noise impacts the phase dynamics by introducing a
random source in the phase equation. The cross phase ex-
hibits di↵erent responses to the noise in the phase locked
and phase slip states. An enlightening way to under-
stand the noise e↵ect is by using the “phase potential”
concept[11]. In the phase locked scenario, the potential
well has finite depth. To “kick” the cross phase out of the
well, it requires the amplitude of the noise to reach a cer-
tain level, or else, the cross phase only bounces around
its fixed value(Fig. 3). In the phase slip scenario, the
potential well is flattened, so even weak noise can induce
phase slips(Fig. 3).

In the H mode state, the level of the noise is bounded
and relatively low, so for the phase locked sate, the cross
phase keeps jumping around its locked value(blue plot
in Fig. 4), which corresponds to small bursts in the
heat flux. The random phase scattering induced by the
noise becomes crucial when the ELM approaches its crash
threshold, in which any tiny enhancement of the cross
correlation may induce an ELM crash. For the phase slip

t

Θk

phase-slip potential 

phase-lock potential 

: weak noise : strong noise

FIG. 3: Sketch of noise e↵ects.

FIG. 4: Noise e↵ects on cross phase dynamics.

scenario, the noise adds extra random phase slips to the
coherent phase slips induced by the mean E ⇥ B shear-
ing. As a result, the periodic phase slips are “smeared”
by the noise and the QH mode enters a state of weak
MHD oscillations with a broad frequency-spectrum(Fig.
4).
In summary, the phase dynamics concept is shown to

be a useful framework for describing nonlinear MHD re-
laxation dynamics in H-mode, which is a near marginal,
self-organized state. By studying the E ⇥ B shearing
e↵ects on the cross phase dynamics, we derive a physics-
based scaling of the E⇥B shear strength required to ac-
cess the QH-mode. We show that if |V 0

E⇥B

| < |V 0
E⇥B,cr

|,
the cross phase is locked to a fixed value and PB modes
are continually pumped. There the thermal energy is
released in large bursts with collapse of the edge pres-
sure profile, so the so-called ELMy H-mode occurs. If
|V 0

E⇥B

| > |V 0
E⇥B,cr

|, �P and �V

PB

are coupled only dur-
ing periodic, short duration phase slips. The thermal en-
ergy is released during short episodes and a QH-mode-like
is induced. The periodic phase slips can be interpreted
as the edge harmonic oscillation phenomenon, observed
during QH-mode[8]. The noise is benign for H-mode op-
eration. In the phase locked scenario, the noise tends to
reduce the coherence between �P and �V

PB

, and hence
reduce the size of the ELM. In the phase slip scenario,
the noise can increase the phase slip frequency, and hence

LP
-1 = < P >

< P ′>
, τ A =

VA
LP
, β = 2 < P >

B2
, ε = a

R

d
dt

Θ = ky V ′ Δx − RMHD P ′ sinΘ + !sΘk
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MHDMHDMHD

Scenario 1: QH with EHO ⇔



d
dt

Θ = ky V ′ Δx − RMHD P ′ sinθk + !s
Θ
k

 Random Phase Slips

14

!sΘk ~ Δω k

Scenario II: turbulent  QH mode

Phase scattering effect is more prominent if

ky V ′ Δx − RMHD P ′ sinθk → 0

The underlying physics of the noise effect can be understood as 
follows:

⇔

Near the critical state (              ), the cross-phase is easier to 
lose coherence and 

evolves into a turbulence state.

′VE×B → ′VE×B,cr



Physics of random phase slips 

Phase potential
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↓
ExB shear reduces the depth 
of the phase potential



‘grassy’ ELM

 Turbulent QH mode

16

phase slip is randomized
by turbulence, EHO loses coherence



Summary

17

Cross-phase dynamics governs edge plasma relaxation:

phase locking— violent relaxation

phase locking— soft relaxation

When                  , coherent phase slips are induced and hence 
the edge relaxation enters a “soft” stage: QH mode with EHO. 

′VE×B > ′VE×B,cr

Nonlinear mode coupling (i.e., phase scattering) can make the cross-
phase lose coherence, so that induces another scenario of soft 
relaxation—turbulent QH mode 
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