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® Violent relaxation <

Two major scenarios for edge plasma relaxation
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Features of QH-mode: ExB shear

ExB shear is fundamental...(Garofalo 201 |)

ion rotation A.M. Garofalo ef al Nucl. Fusion 51 (2011) 083018
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Figure 10. Edge shear in C vi impurity ion rotation versus edge EXB shearl ng
shear in wg rotation for discharges with different H-mode edge
characteristics. Shear is evaluated across the outer half of the

H-mode pedestal width, and is normalized to the local Alfvén Stro ng ExB shear is the

frequency. The grey line connects data for a single discharge

(137234 of figure 2), evolving during the NBI torque ramp-down Most P rom i nent fe ature Of

from a QH-mode phase to ELMing H-mode.

access to QH-mode with
4 EHO.




Role of Cross Phase Dynamics in Edge Pressure Relaxation

Heat flux ', =(6V,,,,0P) ~ cos®

' T

the way of edge pressure profile relaxation

Soft relaxation:
cos® ~ 0

Violant relaxation:
cos® ~ 1

—To know the behavior of the cross phase, one needs study its
evolution and dynamics;

—Nearly all models treat cross-phase as time-independent parameter.
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The Setup

pedestal region

pressure

Sin >
heat flux from core
P=<P>+0P

core small radius | ” V =< V > +5V

%P+V-VP:DV2P+SM

heat flux by
PB modes

Mean pressure:

g (P)==V (6, ,0P)+(D+ D, )V*(P)+S,
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Cross Phase Evolution Equation

Fourier transformation:  §5p = 5p =|6P[e™™® Vi = Viups =|Vi ] €

Approximations:

(1) taking reference phase =0 —

(2)
(3) W@‘ <<‘k‘ ==> ‘ODphaseevoltn

Vi k‘ vary slowly in time and space, :} , near margmal State

A nonlinear equation for the cross phase: | (Adler46.Kuramoto’78)
OVimp = RyppOP

%@ =k, <V>, Ax—R,,. <P>, Sin® + §;



Cross Phase Evolution Equation

%@ =k, (VY Ax—R,,, (P) sin®+35°

v v

detuning by ExB shear pinning force ¢

¢ random phase scattering

increasing the cross-phase,

so that reducing heat flux coming from nonl*ar mode coupling,

reducing the coherence of the cross-phase

attracting the cross-phase to a low value,
so that the MHD turbulence is pumped and
the heat flux is enhanced



Scenario |: QH with EHO <=
Phase Locking for Weak ExB shear

d 4 4 ! AVe
EG) =k (V) Ax— R, (P) sin® + §3
(1) If ) af<lzal(®] : phase locking
© = arcsin ky<V> Ax, <§
‘RMHD‘<P>

Cross phase is ‘attracted’ to a fixed value




<5VP35P>k ~cos® =0
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Scenario |: QH with EHO <=
Coherent Phase Slips — EHO for Vi > Vi,

(PY
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> ‘RMHD‘

(2)
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Periodic phase slips(SHORT) @ Periodic cross-correlation(SHORT)

turbulence fields are transiently pumped during the short phase slips




Scenario |: QH with EHO <=
Frequency of Coherent Phase Slips

Phase slip(EHO) frequency:

poloidal mode # dependence

/ \/[{2 _ 1 K kyVis By AZ|6 Pk|

¥ , T "16VpB kx
QSlip p— kvaXB,yA'l’ ]\r (P)'|6VpR kx|

E.g., DIID
Q, <(V,.,) ~100kHz Q.. ~10kHz

Energy release in each phase slip: Q  AE=S§, = Q /" AE N\

slip
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Scenario |: QH with EHO <=
Scaling of the Critical ExB Shear:

BN 2 N
d—@ =k, (V) Ax}R,p(P) sinO §<

lons’ Radial momentum equation:

Perturbed Bootstrap current: jpsx = —ikz€'/?6 P /By

1.2 iL/2 e 1/2
|VE><B cr| ~ Ty (1_61/2> 5 —
kyAzx| \ Az




Scenario ll: turbulent QH mode <=
Random Phase Slips
d

EG):kyW) AX_RMHD<P> Sin9k+§l(? §S~Aa)k

Phase scattering effect is more prominent if

/4

k (VY Ax—R,, (P) sin@, —0

b

Near the critical state (v;,, —>V,..), the cross-phase is easier to

lose coherence and
evolves into a turbulence state.

The underlying physics of the noise effect can be understood as
follows:
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Physics of random phase slips

Phase potential

®k

phase-lock potential

phase-slip potential

ExB shear reduces the depth
of the phase potential

: weak noise : strong noise




Turbulent QH mode

O,

.

- | e eweee==-:w/O Nnoise

i V. Vi = 1 with noise
¢grassy9 EI.;.M I EXBI/I EXB,crl

V. 5l/IVE .5 | = 0.8:strong noise /_‘_

pmmm—————n Ve gl/IVéxp »| = 0.8 : weak noise

oL I 1 ]
0 10 20 0 40 S0 60

phase slip is randomized

by turbulence, EHO |oses coherence
16




Cross-phase dynamics governs edge plasma relaxation:

phase locking— violent relaxation

phase locking—> soft relaxation

When V/ , >V, .. ,coherent phase slips are induced and hence
the edge relaxation enters a “soft” stage: QH mode with EHO.

Nonlinear mode coupling (i.e., phase scattering) can make the cro
phase lose coherence, so that induces another scenario of soft
relaxation—turbulent QH mode
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