TH/PI-38

Phase Locking, Phase Slips, and Turbulence

- A New Mechanism for Quiescent H-mode

-Implications of Cross-phase Evolution

Z. B. Guo and P. H. Diamond

University of California, San Diego

This work is supported by the U. S. Department of Energy, Office of Science, Office of Fusion Energy Sciences, under Award Numbers DE-FG02-04ER54738 and DE-SC0008378

Two major scenarios for edge plasma relaxation

Features of QH-mode: MHD fluctuations

KH. Burrell et al2016

Features of QH-mode: ExB shear

ExB shear is fundamental...(Garofalo 2011)

Role of Cross Phase Dynamics in Edge Pressure Relaxation

—To know the behavior of the cross phase, one needs study its evolution and dynamics;

-Nearly all models treat cross-phase as time-independent parameter.

The Setup

Cross Phase Evolution Equation

Cross Phase Evolution Equation

Scenario I: QH with EHO \iff

Phase Locking for Weak ExB shear

$$\frac{d}{dt}\Theta = k_y \langle V \rangle' \Delta x - R_{MHD} \langle P \rangle' \sin \Theta + \tilde{s}_k^{\Theta}$$

(1) If $|k_y \langle V \rangle' \Delta x| < |R_{MHD}| \langle P \rangle'$: phase locking

$$\Theta = \arcsin \frac{k_y \langle V \rangle' \Delta x}{|R_{MHD}| \langle P \rangle'} < \frac{\pi}{2}$$

Cross phase is 'attracted' to a fixed value

Phase locking

Scenario I: QH with EHO \iff

Coherent Phase Slips—EHO for $V'_{E\times B} > V'_{E\times B,cr}$

Scenario I: QH with EHO \iff

Frequency of Coherent Phase Slips

Phase slip(EHO) frequency:

poloidal mode # dependence

$$\Omega_{slip} = k'_y V'_{E \times B, y} \Delta x \frac{\sqrt{K^2 - 1}}{K}$$

$$K = \frac{k_y V'_{E \times B, y} \Delta x |\delta P_k|}{\langle P \rangle' |\delta V_{PB, kx}|}$$

E.g., DIIID

 $\Omega_{slip} < \langle V_{E \times B} \rangle' \sim 100 \text{kHz}$ $\Omega_{EHO} \sim 10 \text{kHz}$

Energy release in each phase slip: $\Omega_{slip}\Delta E \simeq S_{in} \Rightarrow \Omega_{slip} \nearrow AE \searrow$

Scenario I: QH with EHO \Leftrightarrow Scaling of the Critical ExB Shear:

$$\frac{d}{dt}\Theta = k_{y} \langle V \rangle' \Delta x - R_{MHD} \langle P \rangle' \sin \Theta + \tilde{s}_{k}^{\Theta}$$

Ions' Radial momentum equation:

 $m_i n_i (\gamma_{\text{MHD}} \delta V_{\text{MHD},kx} + ik_y V'_{E \times B} \Delta x \delta V_{\text{MHD},kx}) = -j_{BS,k} B_{\theta} - ik_x \delta P_k$ Perturbed Bootstrap current: $j_{BS,k} = -ik_x \epsilon^{1/2} \delta P_k / B_{\theta}$

$$|V'_{E \times B,cr}| \simeq \tau_A^{-1} \left(1 - \epsilon^{1/2}\right)^{1/2} \frac{\beta^{1/2}}{|k_y \Delta x|} \left(\frac{L_P}{\Delta x}\right)^{1/2}$$

$$L_{P}^{-1} = \left| \frac{\langle P \rangle}{\langle P \rangle'} \right|, \ \tau_{A} = \frac{V_{A}}{L_{P}}, \ \beta = \frac{2 \langle P \rangle}{B^{2}}, \ \varepsilon = \frac{a}{R}$$

Scenario II: turbulent QH mode \Leftrightarrow Random Phase Slips

$$\frac{d}{dt}\Theta = k_y \langle V \rangle' \Delta x - R_{MHD} \langle P \rangle' \sin \theta_k + \tilde{s}_k^{\Theta}$$

 $\tilde{s}_{k}^{\Theta} \sim \Delta \omega_{k}$

Phase scattering effect is more prominent if

$$k_{y}\langle V\rangle'\Delta x - R_{MHD}\langle P\rangle'\sin\theta_{k} \rightarrow 0$$

Near the critical state $(V'_{E\times B} \rightarrow V'_{E\times B,cr})$, the cross-phase is easier to lose coherence and evolves into a turbulence state.

The underlying physics of the noise effect can be understood as follows:

Physics of random phase slips

Phase potential

Turbulent QH mode

phase slip is randomized by turbulence, EHO loses coherence

Summary

Cross-phase dynamics governs edge plasma relaxation:

phase locking violent relaxation

When $V'_{E\times B} > V'_{E\times B,cr}$, coherent phase slips are induced and hence the edge relaxation enters a "soft" stage: QH mode with EHO.

Nonlinear mode coupling (i.e., phase scattering) can make the cro phase lose coherence, so that induces another scenario of soft relaxation—turbulent QH mode

References: Z. B. Guo and P. H. Diamond, Phys. Rev. Lett. 114, 145002 (2015) Z. B. Guo and P. H. Diamond, Phys. Rev. Lett. 117, 125002 (2016)